
I N T E R A C T I O N S . A C M .O R G3 6 I N T E R A C T I O N S M AY–J U N E 2 017

In the near future, smart materials
will have computational power
embedded in the form of graphene
transistors or nanotubes [1]. These
will be the ultimate computational
composites: materials that hold classic
material qualities, such as structural
durability, flexibility, texture, weight,
and color, but that are also capable of
sensing, actuating, and computing [2].
Indeed, computers will not be things
in and of themselves, but rather will
be embedded into the materials that
make up our surroundings. This also
means that the way we interact with
computers, and the way we program
them, will change. Consequently, we
ask what the practice of programming
and giving form to such materials
would be like. How would we be able
to familiarize ourselves with the

dynamics of these materials and their
different combinations of cause and
effect? Which tools would we need,
and what would they look like? Would
we program these computational
composites through external computers
and then transfer the code to them,
or would the programming happen
closer to the materials? In this article,
we outline a new research program
that floats between imagined futures
and the development of a material
programming practice [1].

ENVISIONING A MATERIAL
PROGRAMMING PRACTICE
Central to the practice of interaction
design is crafting the couplings
and relations between user actions
and artifact functions. To design
interactive artifacts therefore requires

I

 Anna Vallgårda, IT University of Copenhagen
Laurens Boer, IT University of Copenhagen

Vasiliki Tsaknaki, KTH Royal Institute of Technology
Dag Svanæs, University of Copenhagen and

Norwegian University of Science and Technology

Material
Programming

Insights
 → Material programming
is a proposal for how
we are going to practice
interaction design in the
future, when graphene
transistors make
genuine computational
composites possible.

 → Material programming
is an embodied form
of programming that
supports kinesthetic
creative practices.

I N T E R A C T I O N S . A C M .O R G M AY–J U N E 2 017 I N T E R A C T I O N S 3 7

an understanding of the potential
dynamics between sensory and
actuating mechanisms in the materials
with which we design. It is a matter
of getting a feel for the potential
compositions of cause and effect.
Gaining such embodied understanding,
however, is really possible only through
explorations with the materials we
are using for design. As the variety
and complexity of computational
composites rise over the coming decade,
it will become pertinent to develop a
design practice that enables the designer
to maintain this level of exploration.
We envision material programming
becoming such a practice [1].

Supporting kinesthetic creative
practice. Material programming
would complement traditional crafting
of physical form with the crafting

of temporal form; together they
would make up the future practice of
interaction design [2]. Indeed, material
programming would be a programming
practice that enables the designer
to stay in the material realm. The
designer would program directly on
the material and thus have first-hand
access to explore and experience
the outcome of different interactive
compositions. It would minimize the
distance between programming and
execution, and provide the designer
(programmer) access to real-time
situated experiences of causes and
effects. This immediacy would
bridge the intellectual and physical
gap we know from other detached
programming practices
and offer an opportunity for
kinesthetic thinking [3].

Tools for material programming.
A material programming practice
would be a programming practice using
physical tools. With tools in hand,
working directly with the material, the
designer would be able to achieve an
embodied sense of its interactive and
expressive properties. Such tools would
each have a specific function designed
from the designer’s point of view, rather
than from a programming-logic point
of view. By limiting the scope for each
tool’s action space, it would also be
possible to create rather sophisticated
tools. Such tools might require some
learning and expertise, but we assume
that professional interaction designers
would be willing to invest the necessary
time and effort. These tools would not
demand highly technical skills from
the designer, however, only interaction

I N T E R A C T I O N S . A C M .O R G3 8 I N T E R A C T I O N S M AY–J U N E 2 017

design skills. Essentially, we imagine a
future design practice in which we use
traditional material tools and machines
to develop the physical form of the
designs, and material-programming
tools to develop the temporal form of the
interactive artifacts.

Situated and real time. Material
programming would happen on-site
instead of through a detached desktop
computer, with physical tools working
directly on the materials. This would
lower the threshold for designers to
truly explore the potential of a new
material in context and thus give them
a better sense of the design space.
Such expanded support of kinesthetic
creative practice and bespoke
designs would likely result in more
sophisticated expressions, fitted to their
context of use. Material programming
would, however, be limiting if it were
the only means of programming
interactive artifacts. Therefore, we
envision integration with more complex
back-end algorithmic programming
and access to databases when needed.
In that sense, material programming
can be seen as a kind of interface
programming. Yet in some cases there
may not be any back-end at all, and the
interactive artifacts could be designed
from working with these computational
composites alone.

SKETCHING A MATERIAL
PROGRAMMING PRACTICE
To give a better sense of what we mean
by tools for material programming, we
present here some sketches of physical
tools for programming computational
composites. In order to convey the
functionality of these tool sketches,
we assume the existence of a very
particular computational composite:
a shape-changing material that can
respond to airflow. We imagine this
computational composite to be used
in interior design and architecture,
for instance in interactive facades
or in furniture (Figure 1). Through
speculating and enacting the practice of
shaping the behavior of this composite,
we discuss qualities of what material
programming for interaction designers
could look like.

For instance, we suggest that the
tools needed for programming shape
changes are a Select tool and a Force
tool (Figure 2). The Select tool is used
to indicate which area of the material is
activated for programming by brushing

T
the tools work on the material by
wirelessly connecting to its embedded
computational power. The material is
activated when the tools come into close
proximity with it. This allows for the
exchanging of information between the
tool and the material. Similarly, moving
the tool away from the material will
“disconnect” the embedded computers
and the tool.

Where this particular material
is concerned, we are interested in

over it. The Select tool can also be used
for copying and pasting a programmed
area to other areas. The Force tool is
used to program the shape-changing
behavior with respect to when, where,
and how force should be applied in the
material by simulating a pulling motion.
Both tools are inspired by known
techniques for manipulating materials,
such as brushing (selecting) and pulling
(moving). To minimize the distance
between programming and execution,

Figure 1. Illustration of the embodied practice of programming a shape-changing material.

Figure 2. Sketches of three tools for material programming. From left: the Force tool, the Color
tool, and the Select tool.

I N T E R A C T I O N S . A C M .O R G M AY–J U N E 2 017 I N T E R A C T I O N S 3 9

programming the relationship between
the airflow and a resulting shape
change in the material. The first step is
therefore to select the area that should
change its shape by brushing over it with
the Select tool (Figure 3). By adjusting
the distance measure on the tool, areas
of the material larger than the range of
one’s arms can be easily selected. This
would be needed if the design demanded
a large material surface. Using the Select
tool allows the designer to program

different behaviors into different parts
of the material. The next step is to
connect the Force tool to the material.
Independently of input, the designer can
begin exploring the expression space of
the shape changes and become familiar
with the expressive properties of the
particular computational composite
(Figure 4). When the designer pulls or
pushes the sliders on the Force tool, the
material responds with protrusions in
the corresponding direction. The sliders

are operated directly with the hands,
and the tool is responsive to the pressure
applied (pace of the fingers), which is
then translated into the strength of
the force in the material (pace of shape
change). Playing around with different
forces applied to the selected area,
the designer is able to get a feel for the
shape-changing qualities of the material
and the relationship between the actions
on the Force tool and the material’s
response. Since one continuous swipe
on the Force tool results in only one
continuous movement in the material,
the tool also allows for layers of forces,
making it possible to compose more
intricate forms of shape change.

Afterward, the designer can use the
same tool concurrently with increasing
the airflow (input) at the desired areas
of the material (Figure 1). Again,
the designer can play around with
different reaction patterns—whether
it should be a simple action-reaction, or
if an increase in airflow should result
in more elaborate shape-changing
patterns. Finally, when the designer
has found a desired relationship
between expression and airflow,
the Select tool can be used to copy
and paste this to other parts of the
material—or to another piece of the
material, if needed.

Programming materials can thus
be akin to enacting a composed
dance or gradually shaping forms in
clay. Depending on the designer’s
experience, it can be a craft-like
explorative practice or a meticulously
composed design practice. The
more experience, the more intricate
expressions the designer will be able to
compose. The key to this is the open-
endedness of the tools and the real-time
reaction to input.

BUILDING ON RELATED
PROGRAMMING PRACTICES
In most cases the default mode of
programming computers is textual.
There are, however, alternatives to
textual programming languages that
are relevant to discuss in relation
to material programming. Visual
programming, tangible programming,
and programming by example, for
instance, all support explorative
design practices by minimizing
the distance (mentally as well as
physically) between programming
and execution. Here we will discuss
the relationship between the qualities

I

Figure 3. Sketch of the Select tool used on a shape-changing material.

Figure 4. Sketch of the Force tool used for programming a shape-changing material.

I N T E R A C T I O N S . A C M .O R G4 0 I N T E R A C T I O N S M AY–J U N E 2 017

by recording a set of actions through
an artifact/interface, which can
then be played back in that artifact/
interface (Figure 7)[6]. Programming
by example is typically applied in
situations where the artifact is a one-off
and is accessible and tangible, such
as in the design of shape-changing
interfaces and robots. Like visual and
tangible programming, programming
by example has a low entry threshold
for beginners and those from non-
technical disciplines. Further, its
complete lack of abstractions makes
composing the behavior immediate.
The allure of programming by example
in a design context is that it allows
designers to use their tacit/bodily
knowledge in a manner similar to
how non-computational products are
designed, however constrained by what
the materials, actuators, and sensors in
the artifact allow.

In programming by example, we
recognize material programming’s
quality of working almost directly with
the design material to be programmed.
However, programming by example
often results in a limited, artifact-
specific design space. Instead, the tools
used in material programming allow the
designer at least one layer of abstraction,
enabling a larger action space and thus
potentially more sophisticated designs.
Also, the envisioned tools would allow
a wider array of applications that
exclusively utilize a computational
composite’s properties, due to their
specific connections to the materials.

WHY A MATERIAL
PROGRAMMING PRACTICE?
In this article we presented the notion
of material programming as a future
practice for designing computational
composites [1]. Such a practice would

of these programming practices and
material programming.

Visual programming. Visual
programming works by replacing
textual code with visual notations (i.e.,
2D representations) and tools as means
to construct software (Figure 5) [4].
Thus, visual programming utilizes
people’s ability to easily recognize and
work with visual patterns, thereby
minimizing the need for learning.
Visual programming is good in aiding
rapid development, particularly in the
early stages of design. This is partly
due to the low threshold for changing
the logical structure of a program,

which makes it easy to experience
multiple design alternatives in an
explorative manner.

Material programming would
also utilize this latter quality, since
programming and execution happen
in the same material realm. A textual
or graphical overview of the data
structure and algorithms would,
however, not be an integrated part of
the practice, although it could be made
available elsewhere.

Tangible programming. Tangible
programming environments use
physical objects to represent various
programming elements, commands,
and flow-control structures (Figure
6) [5]. Here, the manipulation and
arrangement in space of these objects
are used to construct an algorithm.
Similar to visual programming, tangible
programming enables a visible and
tangible organization of a program that
eliminates levels of abstraction. Yet,
by relying on physical manipulation,
tangible programming is even less
abstract than visual programming,
which means it is even less capable of
supporting the development of complex
algorithms. However, the important
advantage is that it references some of
our experiences in the physical world.

Both tangible and material
programming thus operate in the
physical world. However, while the
tangibility in tangible programming
typically remains a rather cognitive
activity, removing the designer
from the material at hand, material
programming would be an embodied
activity tightly coupled to the material’s
expressive potential.

Programming by example.
Programming by example is a
practice in which the programmer
demonstrates an algorithm to a system f

ig
u

r
e
 5

 im
a

g
e
 b

y
n

. i
. (

h
t

t
p

:/
/w

w
w

.n
i.c

o
m

).
f

ig
u

r
e
 6

 im
a

g
e
 b

y
f

e
l

ix
 h

u

Figure 5. Screenshots of LabView illustrating data-flow diagrams.

Figure 6. Tangible programming: Strawbies [5].

Figure 7. Programming by example: Topobo [6].

I N T E R A C T I O N S . A C M .O R G M AY–J U N E 2 017 I N T E R A C T I O N S 41

be a way for designers to explore
and experience the dynamics of the
computational materials with which
they are working. This will in turn
support the designers’ kinesthetic
creative practice. We believe they will
then become capable of composing
more sophisticated and complex
temporal forms in their designs. We
propose this practice knowing that the
current technology and materials are
not entirely ready to support it, but
we are convinced that they could be
in a not-too-distant future. The future
material programming practice will not
look like the one proposed above, so the
contribution here is therefore in arguing
for the qualities such a practice would
embody, which are fourfold:

First, a material programming
practice would not rely on any direct
representation of the programming
actions performed on the material,
beyond the material itself. A material
programming practice thus unites
the programming and running
modes, while avoiding unnecessary
abstractions that could shift attention
from the material. The argument
here is, that the better the interaction
designer knows the material at hand,
the more sophisticated and finished
the designs will be. Instead of shaping
these temporal dimensions through
detached means (e.g., by writing code on
a detached computer only), the actual
interactive behavior of the material
is explored and programmed on the
material, in real time and in-situ.

Second, we see how the tools
bring us closer to an actual form-
giving practice in interaction design.
Through this practice, the unique
interactive and physical properties of
the particular materials easily play a
key role in both concept development
and actual creation. In a way, material
programming could be more in line with
traditional crafting practices, where
several dedicated tools are used for
crafting a material and can be mastered
through practice and skill gained over
time. This is not unlike a silversmith’s
work. The Force tool, for example,
provides the possibility of exploring
different rhythms and directions
of movement in a shape-changing
computational composite, supporting
an understanding of the properties of
the computational composite at hand.

Third, since the physical interaction
with the material is central to this
programming practice, the designer can
slowly develop tacit bodily skills and
knowledge of how to use the expressive
properties of both tools and materials.
The tools allow the interaction designer
to use her body in ways similar to that of
crafting non-computational materials,
enabling and utilizing the designer’s
expressive potential. This could, for
example, be reflected in the smooth and
refined actions of sliding the thumbs
on the Force tool’s sliding areas to
explore the speed and acceleration of a
material’s shape change.

Fourth, the tools allow for at least
one level of abstraction, which enables
the designer to utilize the ability of
programmed cause and effect in the
computational composites. In other
words, the input/output ratio does
not have to be one to one but rather
can assume other temporal forms and
dependencies in between. Further,
we also see a good possibility for
these materials to be coupled with
more advanced computational power,
once embedded in designs. Thus,
we imagine the programming of the
material coupled with more advanced
algorithms and databases in a back-end
design, which would probably rely on
traditional textual programming. In
that sense, computational composites
and material programming can be
seen as the front-end of a cloud-based
Internet of Things, from a programming
perspective.

Finally, an important bonus is that
a material programming practice
would likely appeal to a wider array of
design and craft practitioners. As such,
the design of our future artifacts and
environments would not rely only on
designers brought up in technological
educations and practices. We envision
that this wider array of participants
would probably lead to a more varied
range of material expressions.

As proposals of new ideas
and research programs go, a full
realization of a material programming
practice would not happen tomorrow.
Working toward it would require
collaborations from material science,
computer science, and interaction-
and industrial design. In the end,
it will look quite different from the
sketched tools proposed here. With

this work, however, we intend to start
giving form to the new possibilities we
have before us.

Endnotes
1. Vallgårda, A., Boer, L., Tsaknaki, V., and

Svanaes, D. Material programming: A design
practice for computational composites. Proc.
of the Nordic Conference on Human-Computer
Interaction. 2016, article no. 46.

2. Vallgårda, A. and Redström, J.
Computational composites. Proc. of the
Conference on Human Factors in Computing
Systems. 2007, 513–522.

3. Svanæs, D. Kinaesthetic thinking:
The tacit dimension of interaction design.
Computers in Human Behavior 13, 4
(1997), 443–463.

4. Myers, B.A. Visual programming,
programming by example, and program
visualization: A taxonomy. Proc. of
the Conference on Human Factors in
Computing Systems. 1986, 59–66. DOI:
10.1145/22627.22349

5. Hu, F., Zekelman, A., Horn, M., and Judd,
F. Strawbies: Explorations in tangible
programming. Proc. of the 4th International
Conference on Interaction Design and
Children. 2015, 410–413.

6. Raffle, H.S., Parkes, A.J., and Ishii,
H. Topobo: A constructive assembly
system with kinetic memory. Proc. of the
Conference on Human Factors in Computing
Systems. 2004, 647–654.

 Anna Vallgårda is an associate professor
and head of the IxD lab at the IT University
of Copenhagen. Her research is focused on
the practices of interaction design as well as
on developing new material expressions for
interactive artifacts.

 → akav@itu.dk

 Laurens Boer is an assistant professor
in interaction design in the IxD lab at the
IT University of Copenhagen. He conducts
constructive design research to investigate and
speculate about new forms and applications for
computational materials.

 → laub@itu.dk

 Vasiliki Tsaknaki is a Ph.D. student at KTH
Royal Institute of Technology and Mobile Life
Research Centre in Stockholm. Her research
is on the intersection of interaction design,
material experiences, and crafts—including
hybrid crafts. She also works with critical
views on the making of interactive artifacts.

 → tsaknaki@kth.se

 Dag Svanæs is a professor at NTNU in
Trondheim, Norway, and an adjunct professor
at ITU in Copenhagen, Denmark. His research
interests include design tools, tangible
interaction, participatory design, usability
methods, medical informatics, and the
philosophical foundations of interaction. His
current research focuses on the role of the
body in design.

 → dags@idi.ntnu.no

DOI: 10.1145/3057277 COPYRIGHT HELD BY AUTHORS. PUBLICATION RIGHTS LICENSED TO ACM. $15.00

