
I N T E R A C T I O N S . A C M .O R G3 6    I N T E R A C T I O N S   M AY–J U N E 2 017

In the near future, smart materials 
will have computational power 
embedded in the form of graphene 
transistors or nanotubes [1]. These 
will be the ultimate computational 
composites: materials that hold classic 
material qualities, such as structural 
durability, flexibility, texture, weight, 
and color, but that are also capable of 
sensing, actuating, and computing [2]. 
Indeed, computers will not be things 
in and of themselves, but rather will 
be embedded into the materials that 
make up our surroundings. This also 
means that the way we interact with 
computers, and the way we program 
them, will change. Consequently, we 
ask what the practice of programming 
and giving form to such materials 
would be like. How would we be able 
to familiarize ourselves with the 

dynamics of these materials and their 
different combinations of cause and 
effect? Which tools would we need, 
and what would they look like? Would 
we program these computational 
composites through external computers 
and then transfer the code to them, 
or would the programming happen 
closer to the materials? In this article, 
we outline a new research program 
that floats between imagined futures 
and the development of a material 
programming practice [1]. 

ENVISIONING A MATERIAL 
PROGRAMMING PRACTICE
Central to the practice of interaction 
design is crafting the couplings 
and relations between user actions 
and artifact functions. To design 
interactive artifacts therefore requires 
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an understanding of the potential 
dynamics between sensory and 
actuating mechanisms in the materials 
with which we design. It is a matter 
of getting a feel for the potential 
compositions of cause and effect. 
Gaining such embodied understanding, 
however, is really possible only through 
explorations with the materials we 
are using for design. As the variety 
and complexity of computational 
composites rise over the coming decade, 
it will become pertinent to develop a 
design practice that enables the designer 
to maintain this level of exploration. 
We envision material programming 
becoming such a practice [1]. 

Supporting kinesthetic creative 
practice. Material programming 
would complement traditional crafting 
of physical form with the crafting 

of temporal form; together they 
would make up the future practice of 
interaction design [2]. Indeed, material 
programming would be a programming 
practice that enables the designer 
to stay in the material realm. The 
designer would program directly on 
the material and thus have first-hand 
access to explore and experience 
the outcome of different interactive 
compositions. It would minimize the 
distance between programming and 
execution, and provide the designer 
(programmer) access to real-time 
situated experiences of causes and 
effects. This immediacy would 
bridge the intellectual and physical 
gap we know from other detached 
programming practices  
and offer an opportunity for  
kinesthetic thinking [3].

Tools for material programming. 
A material programming practice 
would be a programming practice using 
physical tools. With tools in hand, 
working directly with the material, the 
designer would be able to achieve an 
embodied sense of its interactive and 
expressive properties. Such tools would 
each have a specific function designed 
from the designer’s point of view, rather 
than from a programming-logic point 
of view. By limiting the scope for each 
tool’s action space, it would also be 
possible to create rather sophisticated 
tools. Such tools might require some 
learning and expertise, but we assume 
that professional interaction designers 
would be willing to invest the necessary 
time and effort. These tools would not 
demand highly technical skills from 
the designer, however, only interaction 
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design skills. Essentially, we imagine a 
future design practice in which we use 
traditional material tools and machines 
to develop the physical form of the 
designs, and material-programming 
tools to develop the temporal form of the 
interactive artifacts. 

Situated and real time. Material 
programming would happen on-site 
instead of through a detached desktop 
computer, with physical tools working 
directly on the materials. This would 
lower the threshold for designers to 
truly explore the potential of a new 
material in context and thus give them 
a better sense of the design space. 
Such expanded support of kinesthetic 
creative practice and bespoke 
designs would likely result in more 
sophisticated expressions, fitted to their 
context of use. Material programming 
would, however, be limiting if it were 
the only means of programming 
interactive artifacts. Therefore, we 
envision integration with more complex 
back-end algorithmic programming 
and access to databases when needed. 
In that sense, material programming 
can be seen as a kind of interface 
programming. Yet in some cases there 
may not be any back-end at all, and the 
interactive artifacts could be designed 
from working with these computational 
composites alone.

SKETCHING A MATERIAL 
PROGRAMMING PRACTICE
To give a better sense of what we mean 
by tools for material programming, we 
present here some sketches of physical 
tools for programming computational 
composites. In order to convey the 
functionality of these tool sketches, 
we assume the existence of a very 
particular computational composite: 
a shape-changing material that can 
respond to airflow. We imagine this 
computational composite to be used 
in interior design and architecture, 
for instance in interactive facades 
or in furniture (Figure 1). Through 
speculating and enacting the practice of 
shaping the behavior of this composite, 
we discuss qualities of what material 
programming for interaction designers 
could look like. 

For instance, we suggest that the 
tools needed for programming shape 
changes are a Select tool and a Force 
tool (Figure 2). The Select tool is used 
to indicate which area of the material is 
activated for programming by brushing 

T
the tools work on the material by 
wirelessly connecting to its embedded 
computational power. The material is 
activated when the tools come into close 
proximity with it. This allows for the 
exchanging of information between the 
tool and the material. Similarly, moving 
the tool away from the material will 
“disconnect” the embedded computers 
and the tool.

Where this particular material 
is concerned, we are interested in 

over it. The Select tool can also be used 
for copying and pasting a programmed 
area to other areas. The Force tool is 
used to program the shape-changing 
behavior with respect to when, where, 
and how force should be applied in the 
material by simulating a pulling motion. 
Both tools are inspired by known 
techniques for manipulating materials, 
such as brushing (selecting) and pulling 
(moving). To minimize the distance 
between programming and execution, 

Figure 1. Illustration of the embodied practice of programming a shape-changing material.

Figure 2. Sketches of three tools for material programming. From left: the Force tool, the Color 
tool, and the Select tool.
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programming the relationship between 
the airflow and a resulting shape 
change in the material. The first step is 
therefore to select the area that should 
change its shape by brushing over it with 
the Select tool (Figure 3). By adjusting 
the distance measure on the tool, areas 
of the material larger than the range of 
one’s arms can be easily selected. This 
would be needed if the design demanded 
a large material surface. Using the Select 
tool allows the designer to program 

different behaviors into different parts 
of the material. The next step is to 
connect the Force tool to the material. 
Independently of input, the designer can 
begin exploring the expression space of 
the shape changes and become familiar 
with the expressive properties of the 
particular computational composite 
(Figure 4). When the designer pulls or 
pushes the sliders on the Force tool, the 
material responds with protrusions in 
the corresponding direction. The sliders 

are operated directly with the hands, 
and the tool is responsive to the pressure 
applied (pace of the fingers), which is 
then translated into the strength of 
the force in the material (pace of shape 
change). Playing around with different 
forces applied to the selected area, 
the designer is able to get a feel for the 
shape-changing qualities of the material 
and the relationship between the actions 
on the Force tool and the material’s 
response. Since one continuous swipe 
on the Force tool results in only one 
continuous movement in the material, 
the tool also allows for layers of forces, 
making it possible to compose more 
intricate forms of shape change.

Afterward, the designer can use the 
same tool concurrently with increasing 
the airflow (input) at the desired areas 
of the material (Figure 1). Again, 
the designer can play around with 
different reaction patterns—whether 
it should be a simple action-reaction, or 
if an increase in airflow should result 
in more elaborate shape-changing 
patterns. Finally, when the designer 
has found a desired relationship 
between expression and airflow, 
the Select tool can be used to copy 
and paste this to other parts of the 
material—or to another piece of the 
material, if needed.

Programming materials can thus 
be akin to enacting a composed 
dance or gradually shaping forms in 
clay. Depending on the designer’s 
experience, it can be a craft-like 
explorative practice or a meticulously 
composed design practice. The 
more experience, the more intricate 
expressions the designer will be able to 
compose. The key to this is the open-
endedness of the tools and the real-time 
reaction to input.

BUILDING ON RELATED 
PROGRAMMING PRACTICES
In most cases the default mode of 
programming computers is textual. 
There are, however, alternatives to 
textual programming languages that 
are relevant to discuss in relation 
to material programming. Visual 
programming, tangible programming, 
and programming by example, for 
instance, all support explorative 
design practices by minimizing 
the distance (mentally as well as 
physically) between programming 
and execution. Here we will discuss 
the relationship between the qualities 

I

Figure 3. Sketch of the Select tool used on a shape-changing material. 

Figure 4. Sketch of the Force tool used for programming a shape-changing material.
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by recording a set of actions through 
an artifact/interface, which can 
then be played back in that artifact/
interface (Figure 7)[6]. Programming 
by example is typically applied in 
situations where the artifact is a one-off 
and is accessible and tangible, such 
as in the design of shape-changing 
interfaces and robots. Like visual and 
tangible programming, programming 
by example has a low entry threshold 
for beginners and those from non-
technical disciplines. Further, its 
complete lack of abstractions makes 
composing the behavior immediate. 
The allure of programming by example 
in a design context is that it allows 
designers to use their tacit/bodily 
knowledge in a manner similar to 
how non-computational products are 
designed, however constrained by what 
the materials, actuators, and sensors in 
the artifact allow. 

In programming by example, we 
recognize material programming’s 
quality of working almost directly with 
the design material to be programmed. 
However, programming by example 
often results in a limited, artifact-
specific design space. Instead, the tools 
used in material programming allow the 
designer at least one layer of abstraction, 
enabling a larger action space and thus 
potentially more sophisticated designs. 
Also, the envisioned tools would allow 
a wider array of applications that 
exclusively utilize a computational 
composite’s properties, due to their 
specific connections to the materials. 

WHY A MATERIAL 
PROGRAMMING PRACTICE?
In this article we presented the notion 
of material programming as a future 
practice for designing computational 
composites [1]. Such a practice would 

of these programming practices and 
material programming.

Visual programming. Visual 
programming works by replacing 
textual code with visual notations (i.e., 
2D representations) and tools as means 
to construct software (Figure 5) [4]. 
Thus, visual programming utilizes 
people’s ability to easily recognize and 
work with visual patterns, thereby 
minimizing the need for learning. 
Visual programming is good in aiding 
rapid development, particularly in the 
early stages of design. This is partly 
due to the low threshold for changing 
the logical structure of a program, 

which makes it easy to experience 
multiple design alternatives in an 
explorative manner. 

Material programming would 
also utilize this latter quality, since 
programming and execution happen 
in the same material realm. A textual 
or graphical overview of the data 
structure and algorithms would, 
however, not be an integrated part of 
the practice, although it could be made 
available elsewhere. 

Tangible programming. Tangible 
programming environments use 
physical objects to represent various 
programming elements, commands, 
and flow-control structures (Figure 
6) [5]. Here, the manipulation and 
arrangement in space of these objects 
are used to construct an algorithm. 
Similar to visual programming, tangible 
programming enables a visible and 
tangible organization of a program that 
eliminates levels of abstraction. Yet, 
by relying on physical manipulation, 
tangible programming is even less 
abstract than visual programming, 
which means it is even less capable of 
supporting the development of complex 
algorithms. However, the important 
advantage is that it references some of 
our experiences in the physical world.

Both tangible and material 
programming thus operate in the 
physical world. However, while the 
tangibility in tangible programming 
typically remains a rather cognitive 
activity, removing the designer 
from the material at hand, material 
programming would be an embodied 
activity tightly coupled to the material’s 
expressive potential. 

Programming by example. 
Programming by example is a 
practice in which the programmer 
demonstrates an algorithm to a system f
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Figure 5. Screenshots of LabView illustrating data-flow diagrams. 

Figure 6. Tangible programming: Strawbies [5]. 

Figure 7. Programming by example: Topobo [6]. 
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be a way for designers to explore 
and experience the dynamics of the 
computational materials with which 
they are working. This will in turn 
support the designers’ kinesthetic 
creative practice. We believe they will 
then become capable of composing 
more sophisticated and complex 
temporal forms in their designs. We 
propose this practice knowing that the 
current technology and materials are 
not entirely ready to support it, but 
we are convinced that they could be 
in a not-too-distant future. The future 
material programming practice will not 
look like the one proposed above, so the 
contribution here is therefore in arguing 
for the qualities such a practice would 
embody, which are fourfold: 

First, a material programming 
practice would not rely on any direct 
representation of the programming 
actions performed on the material, 
beyond the material itself. A material 
programming practice thus unites 
the programming and running 
modes, while avoiding unnecessary 
abstractions that could shift attention 
from the material. The argument 
here is, that the better the interaction 
designer knows the material at hand, 
the more sophisticated and finished 
the designs will be. Instead of shaping 
these temporal dimensions through 
detached means (e.g., by writing code on 
a detached computer only), the actual 
interactive behavior of the material 
is explored and programmed on the 
material, in real time and in-situ. 

Second, we see how the tools 
bring us closer to an actual form-
giving practice in interaction design. 
Through this practice, the unique 
interactive and physical properties of 
the particular materials easily play a 
key role in both concept development 
and actual creation. In a way, material 
programming could be more in line with 
traditional crafting practices, where 
several dedicated tools are used for 
crafting a material and can be mastered 
through practice and skill gained over 
time. This is not unlike a silversmith’s 
work. The Force tool, for example, 
provides the possibility of exploring 
different rhythms and directions 
of movement in a shape-changing 
computational composite, supporting 
an understanding of the properties of 
the computational composite at hand. 

Third, since the physical interaction 
with the material is central to this 
programming practice, the designer can 
slowly develop tacit bodily skills and 
knowledge of how to use the expressive 
properties of both tools and materials. 
The tools allow the interaction designer 
to use her body in ways similar to that of 
crafting non-computational materials, 
enabling and utilizing the designer’s 
expressive potential. This could, for 
example, be reflected in the smooth and 
refined actions of sliding the thumbs 
on the Force tool’s sliding areas to 
explore the speed and acceleration of a 
material’s shape change. 

Fourth, the tools allow for at least 
one level of abstraction, which enables 
the designer to utilize the ability of 
programmed cause and effect in the 
computational composites. In other 
words, the input/output ratio does 
not have to be one to one but rather 
can assume other temporal forms and 
dependencies in between. Further, 
we also see a good possibility for 
these materials to be coupled with 
more advanced computational power, 
once embedded in designs. Thus, 
we imagine the programming of the 
material coupled with more advanced 
algorithms and databases in a back-end 
design, which would probably rely on 
traditional textual programming. In 
that sense, computational composites 
and material programming can be 
seen as the front-end of a cloud-based 
Internet of Things, from a programming 
perspective.

Finally, an important bonus is that 
a material programming practice 
would likely appeal to a wider array of 
design and craft practitioners. As such, 
the design of our future artifacts and 
environments would not rely only on 
designers brought up in technological 
educations and practices. We envision 
that this wider array of participants 
would probably lead to a more varied 
range of material expressions. 

As proposals of new ideas 
and research programs go, a full 
realization of a material programming 
practice would not happen tomorrow. 
Working toward it would require 
collaborations from material science, 
computer science, and interaction- 
and industrial design. In the end, 
it will look quite different from the 
sketched tools proposed here. With 

this work, however, we intend to start 
giving form to the new possibilities we 
have before us.
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